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ABSTRACT: Little data exist on how twist changes the properties of high-performance
continuous fiber yarns. For this reason, a study was conducted to determine the
influence of twist on the strength and stiffness of a variety of high-performance
continuous polymeric fiber yarns. The materials investigated include Kevlar 29®, Kev-
lar 49®, Kevlar 1499, Vectran HS®, Spectra 9009, and Technora®. Mechanical property
tests demonstrated that the initial modulus of a yarn monotonically decreases with
increasing twist. A model based on composite theory was developed to elucidate the
decrease in the modulus as a function of both the degree of twist and the elastic
constants of the fibers. The modulus values predicted by the model have good agree-
ment with those measured by experiment. The radial shear modulus of the fiber, which
is difficult to measure, can be derived from the regression parameter of experimental
data by the use of the model. Such information should be useful for some specialized
applications of fibers, for example, fiber-reinforced composites. The experimental re-
sults show that the strength of these yarns can be improved by a slight twist. A high
degree of twist damages the fibers and reduces the tensile strength of the yarn. The
elongation to break of the yarns monotonically increases with the degree of twist. © 2000
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INTRODUCTION

Since the 1970s, considerable effort in the fiber
industry has been dedicated to finding new poly-
meric fibers with high performance for potential
use in applications such as ropes and cables, fi-
ber-reinforced composites, ballistic vests, and
gaskets. Kevlar®,! Vectran®,?> Technora®, and
Spectra®*® are some excellent examples of high-
performance polymeric fibers. There have been
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several investigations of the properties and the
structure—property relationships of these high-
performance fibers.~*° These fibers show high
anisotropy' "' when compared to conventional fi-
bers or other bulk materials. This article aimed to
illustrate the importance of material anisotropy
on some macroscopic properties by studying the
properties of twisted yarn.

Special geometric effects are introduced into
fiber yarns in many textile applications. Twist
has long been known to improve the strength of
short-fiber staple materials and few recognize
that many threads are composed of short fibers
that are held together by twist. Strands of twisted
fibers have been used to control flexibility in cop-
per and steel cable systems. Twist is also used to
give continuous yarns integrity and force the as-
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sembly of single fibers to behave as a single unit.
For conventional fibers such as nylon and polyes-
ter, only a small amount of twist is used because
twist damages critical yarn properties. However,
for some high-performance fibers, twist affects
the yarn properties such as modulus, strength,
and elongation to break in a more complicated
way. There are few reports describing the influ-
ence of twist on the properties of high-perfor-
mance polymeric fiber yarns.!''3 One of the pur-
poses of this article was to illustrate and model
the influence of twist on high-performance fiber
yarns.

As early as 1907, Gegauff'* proposed a simple
analysis to correlate the twist angle of a yarn with
the yarn modulus. Gegauff’s derivation is given
below and forms an excellent basis to expand this
type of model.

The geometry of a twisted yarn is shown in the
following:

8
h
T 18h
(a) (b)
27r 27R

tan(—)zT,tanazT

where (a) is an ideal geometry of a twisted yarn;
the solid curve line, a single filament; R, the ra-
dius of the yarn; r, the radial position of a single
filament; &, the yarn length for one turn; &h, the
increase in length 2 under stretching; and 6, the
angle between the path of the single filament at a
radius of r and the yarn axis, and for the single
filament at the radius of R, the angle is «, and (b)
is a flattened projection of a single filament; /, the
length of a single filament at a radius of r; and &/,
the corresponding filament elongation.

Gegauff’s Classic Model of Twisted Yarn
Mechanics

1. Relation of single filament extension to
yarn extension.

Let the yarn extension = &; = 6h/h; then,
the fiber path length = [ = h/cos 6 and the
fiber displacement = 8/ = 6h X cos 6. Con-
sequently,

the filament extension

8l S6h
=g=5= cos20 X —

1 h
Thus,
the yarn extension = &, = g/cos®0

2. Axial tensile force.
The stress along a filament in the yarn is

and an equivalent area perpendicular to
the filament axis = 27rdr cos 6.

Then, at a position of radius r in the yarn, the
component of tension parallel to the yarn axis
resulting from the filament stress becomes
= Ese;(2mrdr cos 0)cos 0 = E2mrdre, cos*6. There-

fore, total yarn tension= [© E2mrdre, cos*0
0
nR%Escos’a Thus, yarn modulus = E
= E;cos’a

However, the measured yarn modulus always
shows a stronger dependency on the degree of
twist than what the model indicated. Platt's fol-
lowed this approach and incorporated the effect of
lateral contraction and large extension. Hearle'®
added the influence of transverse forces and ne-
glected lateral contraction. Treloar and Riding"’
adopted an energy method instead of performing
a stress analysis and considered the migration of
a single filament in a twisted yarn. Freeston and
Platt'® further considered the effect of the strain
rate on the stress—strain behavior. White et al.*®
performed a continuum mechanics analysis in-
cluding not only transverse forces but also inter-
filament friction. They derived a more compli-
cated equation describing the influence of twist on
the yarn modulus:

Yarn modulus = £ = E f
3T,

X <1+9T +1nT1/2>
4 47° (1-Ty 0

in which T, = cos? a.
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None of the models described above provides
good agreement with the experimental data, es-
pecially when yarns made from high-performance
fibers are considered. All these models imply that
the change in the Young’s modulus of a material
depends only upon the angle between the mate-
rial axis and the stress direction regardless of
other material properties. The first drawback of
these models lays in the fact that, for an isotropic
material, the modulus does not change with the
relative direction of the stress with the material
axis. Second, as shown later in this article, yarns
made from different fiber materials behave differ-
ently at the same twist angle, which is not con-
tained in any of the previous models. Therefore,
the omission of important material characteris-
tics, such as anisotropy, yields models that are

Kevlar® (Dupont)
Vectran® (Hoechst Calaneses)
Technora® (Teijin)

Spectra® (Allied Signal)

Twisted yarns were made by anchoring one end of
a fixed length of yarn and, while maintaining a
slight tension, rotating the other end about the
yarn direction a predefined rotation. The length of
the yarn after twisting was recorded and the twist
in these yarns was calculated according to ASTM
D 1432-92. Several terms were used to character-
ize the degree of twist in a yarn. Twist in turns
per inch (tpi) was directly counted. A term called
the twist multiplier (TM) is related to the yarn
twist in tpi and yarn denier by the equation

_ tpi X |denier
- 73 ’

The surface twist angle is the angle between the
filament at the most outer layer of a twisted yarn
and the yarn axis. The linear density of the yarn
was measured by a microbalance to determine the
yarn denier, that is, the weight in grams of 9000

unsatisfactory. In this article, the composite the-
ory is used to incorporate the anisotropy of the
material into a new model that accurately de-
scribes the influence of twist on the yarn modulus
for all polymeric fibers.

EXPERIMENTAL

Commercial fiber yarns of Kevlar 29®, Kevlar
49® Kevlar 149® (DuPont, Richmond, VA, USA),
Vectran HS® (Hoechst Celanese, Wilmington,
DE, USA), Technora® (Teijin, Japan), and Spec-
tra 900® (Allied Signal, Petersburg, VA, USA)
were used in this study. The chemical structures
of these fibers are illustrated below:

{@@_@_m@w)n

O

(O OO Do)

/%82 %
\C
H2 n

meters of yarn. The fiber density was measured
using a density-gradient column. By knowing the
denier and density, the cross-sectional area of the
yarn was calculated.

Tensile testing of the twisted yarn was done us-
ing an Instron® Model 5564 testing machine accord-
ing to ASTM D 2256-90. All the tests were per-
formed at standard conditions of 21°C (1°C) and
65% (2%) relative humidity. Pneumatic yarn/cord
grips were used for these tests, with the effective
gauge length set at 150 mm and a crosshead speed
of 10%/min. The initial modulus was calculated
from the slope of the stress—strain curve in the
strain range from 0.05 to 0.5%. Griping effects were
corrected by adjusting the gauge length.

Notation

Given below is a list of the principal symbols and
notation used in the text. To avoid confusion and
complexity, all the symbols are defined here. Re-
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twist yarn

a layer of twist yarn

& 0 e+
J

open-up structure
of a layer

¢

off-axis unidirectional composite

6,8, B =
A=2mrdr

2

Figure 1 Schematic illustration of the model of calculation of the twisted yarn

modulus from the fiber properties.

ferring to Figure 1, different structural compo-
nents—a single filament, a layer of flattened
twisted yarn composed single filaments resem-
bling a unidirectional composite, and a twisted
yarn—are utilized in this article. The properties
of a single filament are transformed first into
on-axis properties and further into off-axis prop-
erties of the unidirectional composite.

For a single filament and twisted yarn, the
symbols follow what was previously defined:

E, &5 and o, characterize the behavior of a
single filament.

¢, and o characterize the behavior of a twisted
yarn.

E(a) is the apparent Young’s modulus of a
twisted yarn with the surface twist angle of «.

For the layer of flattened twisted yarn, that is,
the unidirectional composite, the on-axis consti-
tutive equation can be expressed by the following
matrix:

-
S
z Ely o
—_ Vyz 4
. = 0
E, E, ( ‘;y )
1 S
0 0

and the off-axis constitutive equation can be ex-
pressed by the following matrix:
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€1 S Sz S
( €2 ) = ( Ss1 Sge S )
€6 Ss1 Ss2 Ses
E, E, E;
— vy i Vs ( gl )
— Va1 Ve2 1

E, E, Es

in which z and y are principal terms of the on-axis
behavior; 1 and 2, principal terms of the off-axis
behavior; s and 6, shear terms; ¢;, the strain; o,
the stress; S;; and E;, the compliance and engi-
neering Young’s modulus; and »,;, Poisson’s ratio.

On-axis properties of a twisted yarn layer are
the same as the properties of a single filament, E,
=E; E,=E,; and E, = E,, in which E,, is the
shear modulus and E, is the transverse radial
modulus in a filament. 0, «, r, and R have the
same meanings as previously defined in the ideal
twist geometry and dominate the characteristic
off-axis behavior of different yarn layers. T, is a
function of the surface twist angle, cos®«; d, the
anisotropic ratio, E/E; E,., E ., and E., the on-
axis Young’s moduli and shear modulus of an
unidirectional composite; and E,, and G,,, the
Young’s modulus and shear modulus of the ma-
trix in a composite.

MODELS, RESULTS, AND DISCUSSION

The approach used to model how the yarn modu-
lus is influenced by the degree of twist is quite
straightforward. A strategy was taken as shown
schematically by Figure 1. The notation in the
following discussion will follow that in Figure 1.
The twisted yarn was first dissected into individ-
ual loading elements, which are a series of thin-
wall tubes. A tube is hypothetically cut and
opened up to be a sheet structure with a preferred
orientation different from that of the planar ma-
terial axes. The stress—strain response of the
plane was solved using orthotropic composite the-
ory.?’ The responses of the individual elements
were added via integration of the layered struc-
tures and this yields the stress—strain behavior of
the yarn. In this way, the yarn modulus was
derived from the single-filament properties.

1. Single-layer mechanics in a twisted yarn.

A thin-walled layer of the twisted yarn

was taken. The open-up structure of this
layer resembles a unidirectional composite.
At the radial position of r, the off-axis angle
is 0, and at the radial position of R, the
off-axis angle is a.

According to composite theory,?’ under
uniaxial stress, a unidirectional composite
responds as

0

g1
g1= S110, = E
Therefore, the off-axis modulus of a single
layer E, = 1/S4,
and the off-axis stress

1
oi(0) = S5 (1)

2. Yarn mechanics by layer assembly.

Assuming no slippage between layers be-
cause of the integrity of a twisted yarn,
each layer has the same extension ¢ = g;
under uniaxial stress. Also, assuming con-
tinuous layers along the radial direction in
a twisted yarn, the axial force in a yarn is

R
sz o.(0)dA :f o.(0)27rdr (a)

0

If the yarn is treated as one body, the axial force
can also be expressed as

F = WR2E'81 (b)

in which £ is the apparent yarn Young’s modulus.
Utilizing the ideal twist geometry,

2mR
and tan o =

_ 2mr
tan 6 = T T

as well as the equality of egs. (a) and (b) and the
expression of ¢4(0) by eq. (1), the apparent
Young’s modulus of a twisted yarn can be calcu-
lated as

R 2 @ 1

— 2

E = tan’a f S.(0) tan 6 sec®0d 0 (2)
0
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Exact Solution

According to composite theory,?® the off-axis com-
pliance of a unidirectional composite can be ex-
pressed as

S =m'S,, +n'S,, + m’n®S, + 2m°n*S,, (3)

where
S_ls_ls_ls_vzy_ vy,
ZZ_EZ’ yy_Ey7 SS_ES’ zy__Ey__E

m = cos 6, n = sin 6, and 0 is the off-axis angle.
The compliance S;; can be expressed by the mod-
uli after rearrangement as
1 1 2 2y,
Sll = Ey + | — 5 —

(1 1 1 2v
J’_ —

4

Substitution of eq. (4) into eq. (2) yields after
integration

Yarn modulus

Bla) = 1 b (a+b+c)T? T,—1
(o) = tana | 2¢2 (@T:+bTy+¢c) T,
(2a +b — b - 4ac)
(b2 — 2ac) X (2aTy + b + \b* — 4ac)

2¢?\b? — 4ac . (2aTo+ b — b2 — 4ac)

X (2a +b + \b* — 4ac)
(5)

in which
T 1 1 1 2v,
) = cos“a, a EZ-I-E Evs E.’
1 2 2y, 1
b=E " E E °TE

Approximation

To reduce the rather complicated eq. (5) to a sim-
pler form, several approximations were used.
Since it is generally true that a high degree of
twist damages the material properties, only low

twist angles are usually used in real applications.
The approximations given below are valid only for
this condition. Another factor used to simplify the
above expression is recognition of the fact that for
high-performance fibers the ratio of the longitu-
dinal modulus to the transverse modulus is usu-
ally greater than 10.
In case of a low off-axis angle (o < 15°),

m?> ni(n?m? < 7%)

Taking a range of —0.5 = v, < 0.5, which was
found reasonable for PPTA fiber!? and assumed
for other fibers investigated, then

m*S.. + 2m?n%S,, = m¥E.(m? — 2v,.n% ~ m*S.,

For, S, ~ S

589
n'S,, + m’n*S,, = n*(n*S,, + m*S,,) =~ m’n’*S,,

Then,

S =miS,. + m®n3S,, (6)

Now, the anisotropic ratio is defined asd = E/E_,
which is the ratio of the longitudinal modulus and
the shear modulus of the filament.

Through integration,

Yarn modulus, E'(a) =E,
3T,+1 1-d)? A-d)T,+d
“\Toar, ) T

d® tan’a T,
After this approximation, only a shear-coupling
effect is incorporated in the model to affect the
properties of anisotropic materials and trans-
verse coupling and secondary coupling are omit-
ted.

(7

Discussion of the Model

Consideration of Extreme Cases
1. The case of an untwisted yarn.

Statement: If the yarn is untwisted, the yarn
modulus should be equal to the filament modulus

at o = 0. )

For eq. (5), it is easy to prove that E(0) = E..
For eq. (7), at « = 0, because tan « = 0, and



1944 RAO AND FARRIS

1.10

— cxact solution (eqn. 5)

105 — e« e approximation (eqn. 7°)
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twist angle o

Figure 2 Predicted twisted yarn modulus for an iso-
tropic material.

1-d)T,+d

L’Hopital’s Rule needs to be used which yields

. 1+d?
E(O) = Ez X 7

For high-performance fiber yarns, d > 10, then
E(0) =~ E,. For conventional fibers, eq. (7) was
modified to yield the exact answer when a = 0:

L 3T, +1) (1-d)?

E(“)‘EZXK 2dT0> 4 tana
1-d)T,+d 1+d?
SR

2. The case of an isotropic material.

Statement: E(a) = E, at all o’s for isotropic
materials.

The yarn modulus was predicted by the model
equations and the data are illustrated in Figure 2
for an isotropic material. It is clear that eq. (5)
predicts a constant modulus for any twist angle
and eq. (7'), the approximate relation, gives a
deviation less than 3%. Both predict that the ma-
terial properties for an isotropic material will not
change with the material orientation, while the
earlier models did predict a change.

Confirmation of the Model by Materials with
Known Properties

To confirm the proposed equations, tests were
performed to determine the dependency of modu-
lus on twist for a material with known properties,
and these data were compared with the derived
equations. The longitudinal properties of a fiber
are easy to measure, but the transverse and shear
properties are very difficult to determine. Kevlar
499 is generally used in composite materials as a
reinforcing fiber. Most of the material properties
such as composite and matrix moduli and the
fiber properties were tested. From these data, it is
then possible to derive several unknown material
constants through valid composite equations.

According to the composite properties of a Kev-
lar 49®/epoxy unidirectional composite, in which
the volume content of the fiber, V,, is 0.6 and the
volume content of the matrix, V,, is 0.4,>! E_,
=76 GPa, E,. = 5.5 GPa, and E,. = 2.3 GPa. The
matrix properties of epoxy are E,, = 3 Gpa and v
= 0.3, isotropic. According to the Rule of Mix-
tures, E,. = V:E, + V,,E, ; then, E, = 124.7 GPa,
which is the same as that directly measured using
an untwisted yarn sample.

According to the so-called Constant-Stress
Rule,??

1V

E, E, E,

V., 1 V., V,

"E.E, E, G,

yc

E, = 6.9 GPa, E, = 12.4 GPa, so the anisotropic

ratio d = 18.

By inserting these fiber properties into the
equations, the twisted yarn behavior can be pre-
dicted. Figure 3 shows good agreement between
the predicted yarn moduli by both the exact and
approximate equations and the measured yarn
modulus for different twist angles.

In summary, in a twisted yarn, the anisotropic
ratio, which is the ratio between the axial modu-
lus and radial shear modulus, determines how
the degree of twist influences the yarn modulus,
and this also is important information for fiber-
reinforced composites.

In this study, the stress state was simplified
into a unidirectional stress acting along the yarn
direction. As Allen'? already showed, because of
the cylindrical orthotropy, a simple uniaxial
stress state is almost impossible. Hoop and radial
stresses are induced by the action of an axial
stress in any cylindrical anisotropic material to
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2
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twist angle o

Figure 3 Comparison of the predicted and measured
yarn modulus of Kevlar 49® fiber.

form a complicated stress state. However, Allen’s
calculations on Kevlar® fiber indicate that the
magnitudes of radial and hoop stress are less
than 1% of the axial stress. Therefore, the effect of
a complex stress state, as well as the coupling
effect from the transverse Young’s modulus and
further coupling caused by off-axis angles, can be
attributed to secondary importance and that is
why they could be reasonably omitted in this
model.

Examination of a Conventional Fiber by Our Model

Other researchers® claimed that an equation
E(a) = E, cos®a yields a good fit to the yarn
modulus data of nylon fiber. It is worthwhile to
compare the results from our model and the con-
ventional “cos®a” rule and further confirm our
model. Ward?* reported a full set of elastic con-
stants for nylon fiber after careful measurements:
E, = 3.45 GPa, E, =1.37 GPa, v,, = 0.48, and E|
= 0.61 GPa. Using these elastic constants, a pre-
dicted curve can be generated by our model. Zo-
rowski and Murayama?®® reported a comparison of
the experimental data and the “cos®a” rule pre-
diction for nylon fiber. The predictions from our
model and their data are shown together in Fig-
ure 4. Both curves describe the true behavior
well, because for low anisotropic ratio materials,
the coupling effect from the shear modulus does

1.1

2
© cos o rule

=

// ‘
eqn.'s and 7'

=
.

o
©
|

normalized modulus (E/E,)

| Y IS U S Y (NS Y SN N N |

| I -

o
o

0 5 10 15 20
twist angle

Figure 4 Comparison of the twist effect on the yarn
modulus of two models for nylon fiber, cos®« rule, and
our model with the experimental data®3; lines are pre-
dicted curves and dots are experimental data.

not significantly deviate from the twisted yarn
modulus from the earlier models. This might be
one of the reasons why the importance of the
anisotropic nature of the fiber did not draw
enough attention in the past.

14
—o— kevlar49
13 —&— vectran HS
2 - —=— kevlar 29
Z 12 - —— kevlar149
= —o— spectra
214 technora
5 5
=
% 10 PN Ny ———
2
N 09 »
E 3
©

E 08 \
2

0.7 — ?\ﬂ

0.6 | | | T

0 5 10 15 20 25

twist angle

Figure 5 Yarn strength with the twist angle for var-
ious fibers.
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~ —8— keviar 149
& 1.5 5 —— spectra 900
W
~ —-— technora
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=
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Figure 6 Strain to break of a yarn with the twist
angle for various fibers.

Twist Effect on Yarn Properties and Applications of
the Model

The influence of the degree of twist on yarn prop-
erties, such as the yarn modulus, yarn strength,
and elongation to break, was systematically stud-
ied for several high-performance fibers. The re-
sults are shown by Figures 5-7.

A general trend for the change of the yarn
strength with the twist angle is that there is an
optimum degree of twist for the yarn to achieve
maximum strength. The magnitude of the rela-
tive strength at the same twist angle depends on
the material. Kevlar 49® shows the largest in-
crease in strength at the optimum twist degree,
which is followed by Vectran HS®, Kevlar 29,
and Kevlar 149®, Spectra® and Technora® show
only a slight increase in strength. The optimum
twist angle for all the material was found to be
near 7°. Generally, the elongation to break of the
twisted yarn increases with the twist degree.
Again, the magnitude of the increment depends
on the material, and Kevlar49® shows the largest
increase while Spectra® shows almost no change.

Extensive studies on the influence of the de-
gree of twist on strength and extensibility were
done on continuous fiber yarns of several textile
fibers such as acetate, nylon, viscose, and te-
nasco?®728 as well as spun yarns made from staple
fiber.293° Generally, for yarns made from staple
fiber, the strength shows a maximum while the
extension to break increases with the degree of

twist.2%3% For some continuous fiber yarns stud-
ied, both the strength®® and the breaking exten-
sion®! of twisted yarns show a maximum at a
certain surface twist angle. The reason for the
increase in strength is likely due to an interlock-
ing mechanism where the filaments are held to-
gether by radial forces and friction and, in effect,
enables a single fiber to fail more than once. It is
also possible that this transverse compression al-
ters the stress state for the material and results
in a different strength in a complex failure crite-
rion. The prediction of the strength of twisted
yarn is an interesting topic®?=2* but will not be
pursued in this article.

A mathematical curve-fitting procedure was
used to resolve the data for the yarn modulus as a
function of twist for the other fibers using eq. (7)
(Fig. 8). The anisotropic ratio, which was un-
known for these fibers, is the only fitting param-
eter. After the fitting, the radial shear modulus
can be calculated, as the longitudinal modulus is
known from the untwisted yarn measurement.
The results from this type of analysis are shown
in Figure 8 where the agreement is quite good.
The radial shear moduli for these fibers were
calculated and are listed in Table I. These data
are useful for the study of corresponding fiber-
reinforced composites as well as for constructing
the proper geometry for ropes and cables.

An extension of the application of the model
and also a further step to confirm the model is to

1.1
=
E 1.0 — o
g 0.9 — @0
g 0.8 —--©- Technora <> I‘:':‘o
= ---8-- Vectran HS O-j-.
g t- Kevlar 29 Q‘:'
= 0.7 4 Spectra 900 . <
£ - Kevlar 49
;5 0.6 - ©- Kevlar 149
= 2 ©

T cos orule
0.5 I | | l

0 10 20 30 40
twist angle

Figure 7 Yarn modulus changes with the twist angle
for various fibers; solid line is the cos?«a rule.
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Figure 8 Curve-fitting results of the change of the yarn modulus with the twist
degree for various fibers. In the plot, solid lines are the fitting curves and dots are the
experimental data; the fitting parameter is shown in the plot.

consider a more complicated heterogeneous
twisted yarn where the twisted yarn consists of
two different types of fibers. The yarn modulus of
mixed fibers can be predicted according to the
arrangement of the different fibers inside the
yarn by using the model. A different response is to
be expected if the arrangements of the two fibers
inside the yarn are different, since the behavior is
determined by the material constants and their
radial placement. A heterogeneous yarn consist-
ing of Kevlar 149® and Technora® was examined.

Two forms of the geometry as shown by Figure 9
were taken: One has Kevlar 149® fiber as the core
and Technora® as the outer layer; the other has
the opposite arrangement. To form a heteroge-
neous twisted yarn with the same twist degree
distribution as of a homogeneous twisted yarn,
the core material was twisted first to a certain
twist degree calculated by the radius of the core
and the outer layer was twisted carefully around
the core layer. The yarn moduli of these two yarns
at different twist angles were measured and com-
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core fiber

S

<— outlayer fiber

Figure 9 Illustration of a heterogeneous yarn. KevTe
yarn has Kevarl 149® core and Technora® outer layer.
TecKe yarn has Technora® core and Kevlar 14® outer
layer.

pared to the predicted value using the anisotropic
ratios determined earlier. The result is shown in
Figure 10, where the experimental data and pre-
dicted values show good agreement.

CONCLUSIONS

An analysis based on composite theory was used
to model the influence of twist on the yarn mod-
ulus. It is shown that the material anisotropic
ratio, which is the ratio between the longitudinal
modulus and the radial shear modulus, is an im-
portant factor in determining the influence of
twist on the yarn modulus. For high-performance
fibers, it is validated that a simple equation con-
taining two variables, the twist angle and the
material anisotropic ratio, can be used to predict
the change of the yarn modulus with twist for a
variety of fibers. From this analysis, it was deter-
mined that Kevlar 49%®, Kevlar 149®, and Spectra
900® fibers have higher anisotropy than that of

1.05

1.00 —
KevTe yarn

0.95 —

normalized modulus E(0)/E,

080 —71 71 T T T 1

0 2 4 6 8 10 12
twist angle o/(°)

Figure 10 Comparison of (lines) predicted data and
(dots) experimental data of the twist effect on modulus
of heterogeneous yarns.

Technora®, Vectran HS®, and Kevlar 29®. The
calculated radial shear moduli provide useful in-
formation for the study of fiber-reinforced com-
posites. Experimental results also show that
there is an optimum twist angle of around 7° at
which all the fiber yarns exhibit maximum tensile
strength, but the magnitude of the increase de-
pends on the material. The elongation to break of
the twisted yarns increases with the twist degree
for all of the fiber yarns investigated.
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Table I Anisotropic Ratio and Calculated Radial Shear Modulus For Different Fibers

Vectran HS® Technora® Kevlar 29® Kevlar 49® Kevlar 149® Spectra 900®
d = E,/E, 8.9 8.8 17.8 16 12.1
E 11.9 8.3 6.5 9.2 4.5
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